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Quantum fluctuations driven orientational disordering: A finite-size scaling study
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The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-
rotor model in the low-temperature regime. The phase diagram of the model is first analyzed within the
mean-field approximation. This predicts atT50 a phase transition from the ordered to the disordered phase
when the strength of quantum fluctuations, characterized by the rotational constantQ, exceeds a critical value
Qc

MF . As a function of temperature, mean-field theory predicts a range of values ofQ where the system
develops long-range order upon cooling, but enters again into a disordered state at sufficiently low tempera-
tures~reentrance!. The model is further studied by means of path-integral Monte Carlo simulations in combi-
nation with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is
predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant
behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a
genuine long-range order.@S1063-651X~97!04802-2#

PACS number~s!: 05.70.Fh, 05.30.2d, 64.60.Cn, 68.35.Rh
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I. MOTIVATION

Physisorbates are experimental realizations of quasi-t
dimensional systems that display an extremely rich ph
behavior due to the competition between intermolecular
molecule-surface interactions, as documented, e.g., in R
@1–5#. Correspondingly, there is a wealth of phase transiti
between the various ordered phases as a function of temp
ture and coverage. Since many of these transitions occu
fairly low temperatures, quantum effects might play an i
portant or even crucial role@3,4#, as recently demonstrate
for the ordering of hydrogen isotopes on graphite@6#. Mo-
lecular systems are particularly interesting as they pos
orientational degrees of freedom that can order in additio
the positions @5#. In the case of linear molecules, th
anisotropic-planar-rotor~APR! model @7,8# was devised to
describe the herringbone~quadrupolar orientational two
sublattice! ordering transition@5#, e.g., in commensurate N2
monolayers on graphite. The classical two-dimensional A
model consists of planar rotators pinned with their cente
rotation on a triangular lattice and interacting via neare
neighbor quadrupolar interactions only; a three-dimensio
version has also been proposed and investigated in var
approximations@9#.

Over the years the APR Hamiltonian acquired the sta
of a statistical-mechanicalmodel in its own right; see Refs
@10,5#. Many of these activities arose because the orde
the APR phase transition turned out to be extremely ch
lenging to determine@11#, finally favoring a first-order phase
transition that is ‘‘weak’’ and fluctuation driven@12#; see the
detailed review in Ref.@5#. The plain APR model was gen
eralized to include vacancies or impurities@13–15#, as well
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Engineering, Slovak Technical University, Ilkovicˇova 3, 812 19
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as multipole interactions other than those of quadrupo
symmetry @14,16#. Simplified Hamiltonians were obtaine
after discretizing the continuous rotations to an anisotro
six-state model@17# or to more general discrete models@18#.
We introduced quantum generalizations of interacting tw
dimensional quadrupolar lattice systems@19,20#, in particu-
lar of the APR model@21,22#. For a given lattice, the classi
cal APR model has no free parameter because
quadrupolar coupling constantK only sets the energy scal
of the model. Correspondingly, the phase diagram is
dimensional and is fully characterized by a single numb
the transition temperature scaled by the constantK. In the
quantum case, however, the quantum kinetic energy is de
mined by the mechanical moment of inertiaI associated with
the angular motion of the two-dimensional rotators. The
sulting rotational constantQ5\2/2I is an additional inde-
pendent parameter that determines the strength and en
scale of the quantum fluctuations, and in the limitQ→0 the
quantum APR model reduces to the classical one. The re
ing behavior of the quantum APR model is governed by
interplay between thermal and quantum fluctuations. This
teresting feature is present also in other systems, suc
Ising models in transverse field@23,24#, models for granular
superconductors@25# and superconducting arrays@26#, lattice
f4 theory @27#, and quantum four-state clock models@28#;
see Ref.@22# for a short discussion of these related mode

In our previous studies@21,22# we presented an initia
qualitativeexploration of the two-dimensional~2D! quantum
APR Hamiltonian, using path-integral Monte Carlo~PIMC!
simulations@29# adapted to rotational motion restricted
two dimensions@30#. It was demonstrated numerically@22#
that low-order approximation schemes such as quasiclas
Monte Carlo simulations using the quadratic Feynman-Hib
effective potential, and the simple quasiharmonic approxim
tion are useful only in the regime of small rotational co
stantsQ→0, whereas they fail completely in the large-Q
range that is of interest here. The phase boundaries w

al
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55 2185QUANTUM FLUCTUATIONS DRIVEN ORIENTATIONAL . . .
estimated phenomenologically from the behavior of the or
parameter, i.e., without applying any kind of finite-size sc
ing to the data obtained from 3025900 interacting rotators
Increasing the value ofQ, four distinct regimes were found
based on the shape of the orientational order parameter
smallQ, the transition temperature and value of the grou
state order parameter obtained from the classical mode
renormalized just to smaller values. In the opposite limit
largeQ, the quantum fluctuations are that strong that they
not allow for any ordering even in the ground state. Mo
interesting are the intermediate regimes. For increasingQ a
crossover was found where there is residual ground-state
der, although significantly depressed from its classical va
but the order parameter inside the ordered phase firstin-
creasesupon heating and goes through a maximum at so
intermediate temperature before it decays in the disorde
phase. For even largerQ, there seemed to be a region
parameter space with vanishing ground-state order toge
with residual order at finite temperatures. The ‘‘tentative a
qualitative phase diagram’’ in theQ-T plane thus seemed t
exhibit a reentrancephenomenon in a range ofQ where
quantum and thermal fluctuations are competitive; see Fi
in Ref. @22#. A similar behavior was already discovered
mean-field studies of certain quantum Ising models@24#,
quantum four-state clock models with quadrupolar inter
tions @28#, and interacting 3D quadrupolar rotators@31#. The
reentrance in the two-level systems was also found to
present when fluctuations were included to lowest orde
the form of a Kirkwood correction on top of the Bragg
Williams expressions@24#. The reentrance in the three
dimensional system was ascribed in Ref.@31# to two distinct
first-order phase transitions, a standard order-disorder tra
tion at higher temperatures that is also present in the co
sponding classical model, and a transition of pure quan
nature at low temperatures.

With the present paper, we concentrate on the region
the phase diagram of the 2D quantum APR model wh
reentrance might be expected to occur. We use first a m
field approximation and then a PIMC simulation. The aim
the work is to study the orientational transition behavior
the reentrance regime. In particular, we are interested to
out whether there are actually two distinctphase transitions
occurring as a function of temperature. To this end, we sim
late the system on several length scales and use finite
scaling, in particular Binder’s cumulant@32,33#, to analyze
the order parameter distributions.

The main body of the paper is organized as follows. T
quantum APR model together with its order parameter
defined in Sec. II. In Sec. III A, the quantum PIMC simul
tion technique is described, followed by the definition of t
relevant observables in Sec. III B and an outline of the fin
size scaling analysis method in Sec. III C. The mean-fi
approximation is worked out in Sec. IV. In Sec. V, the r
sults of the simulation are discussed and compared w
those of the mean-field approximation and a possible s
nario is suggested. In Sec. VI, we summarize the results
draw some conclusions.

II. QUANTUM ANISOTROPIC-PLANAR-ROTOR MODEL

The subjects of this study are the properties and in p
ticular the phase diagram of the quantum-mechanical ver
r
-

or
-
et
f
o

r-
e,

e
ed

er
d

9

-

e
n

si-
e-
m

of
e
n-
f

d

-
ize

e
s

-
d

th
e-
nd

r-
n

of the APR model@7,8#. The classical APR Hamiltonian wa
extensively studied over the years, both numerically and a
lytically; see Ref.@5#, where the properties of the classic
model including the order parameter and the herringb
orientationally ordered ground state are discussed. ThN
quadrupolar rotators are fixed with their center of mass on
ideal rigid triangular lattice$Rj% and only rotations in the
two-dimensional surface plane are allowed. The interacti
are truncated at the first-neighbor shell and the rotators in
act exclusively with their six nearest neighbors via the ani
tropic part of a quadrupole-quadrupole potential of stren
K in two dimensions. The quantum generalization resu
after supplementing this classical Hamiltonian with a no
commuting angular momentum part@L j ,w i #52 i\d j ,i
which introduces quantum dispersion and thus qualitativ
different effects due to additional fluctuations and tunnelin
Correspondingly, the quantum APR Hamiltonian reads

H5(
j51

N L j
2

2I
1(

^ j ,i &

N

V~w j ,w i ! ~2.1!

52Q(
j51

N
]2

]w j
2 1K(

^ j ,i &

N

cos~2w j12w i24f j ,i !,

~2.2!

where the anglew j of the j th rotator pinned at siteRj is
defined relative to one symmetry axis of the triangular latt
and the six phasesf j ,i measure the angle between neighb
ing sites Rj and Ri on this lattice, i.e., f j ,i
P$0,p/3,2p/3,p,4p/3,5p/3%. We stress that for this sys
tem the triangular lattice structure is essential in order
produce a nontrivial ordered phase. On a simple square
tice the quadrupolar interaction would just favor unfrustra
perpendicular nearest-neighbor orientations of the charac
istic T shape.

The moment of inertiaI determines the rotational con
stant Q5\2/2I , which is the parameter that controls th
strength of quantum effects. The other parameter of
model, which is the quadrupolar coupling constantK, can be
conveniently taken as the energy and temperature scale
can thus reduce all quantities related to energies byK and
define, e.g., the dimensionless temperatureT*5kBT/K, en-
ergyE*5E/K, and rotational constantQ*5Q/K.

The long-range order parameter sensitive to herringb
ordering of the rotational axis has three (a51,2,3) indepen-
dentcomponents

Fa5
1

N (
j51

N

sin~2w j22ha!exp@ iQa•Rj #, ~2.3!

where

Q15p~0, 2/A3!, h150,

Q25p~21,21/A3!, h252p/3,

Q35p~1,21/A3!, h354p/3. ~2.4!
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III. NUMERICAL METHODS

A. Path-integral Monte Carlo simulation technique

We study the properties of the Hamiltonian~2.2! by
means of PIMC simulations; for general reviews on the c
cept of PIMC we refer to Ref.@29#. We just stress here tha
for rotational motion in two dimensions different featur
connected to the restricted integration space show up in
formalism@34#. This latter aspect and our implementation
these specialties in a PIMC scheme is discussed in deta
Ref. @19#, and here we present only the essential feature

In general, the partition function of a Hamiltonian of typ
~2.1! is given by

Z5Tr exp@2bH# ~3.1!

5 lim
P→`

S IP

2p\2b D NP/2

3)
j51

N H (
nj52`

` E
0

2p

dw j
~1!)

s52

P F E
2`

`

dw j
~s!G J

3expH 2b (
s51

P F (
j51

N
IP

2\2b2 [w j
~s!2w j

~s11!12njpds,P]
2

1(
^ j ,i &

N
1

P
V~w j

~s! ,w i
~s!!G J , ~3.2!

whereV(w j
(s) ,w i

(s)) denotes the APR pair potential of Eq
~2.2! evaluated separately for the configuration at ea
imaginary time slices51, . . . ,P. Each quantum-mechanica
rotational degree of freedom is represented in this pa
integral representation byP classical rotators that form
closed loops and interact via harmonic-type interactions;
the related ring-polymer picture see Refs.@35,29#. The pa-
rameter P is the Trotter number, the configuratio
$w j

(1) ,w j
(2) , . . . ,w j

(P)% is a realization of a Trotter path, an
the path integral results from the proper integration and s
mation over all possible paths. However, contrary to p
integrals for translational degrees of freedom, these loop
not need to be closed using periodic boundary conditio
but only mod 2p; note that the classical anglesw j

(s) of Eq.
~3.2! are not confined to@0, 2p) but are allowed on the
whole interval@2`,`#. The resulting mismatchnj is called
the ‘‘winding number’’ of the j th path@34# and the formu-
lation ~3.2! is the ‘‘winding number representation’’ of th
partition function. Only the Boltzmann-weighted summati
over all possible winding numbers in addition to the integ
tion over all paths having a certain winding number yie
the correct quantum partition function in the Trotter lim
P→`; see Ref.@19# for a full discussion of that issue. Thu
we have to include in the algorithm, in addition to local a
global moves of the angular degrees of freedom$w j

(s)%, also
attempts to change the winding numbers$nj% of the indi-
vidual rotators. Our algorithm was tested@30,19# against ex-
act ~single-particle! results and a close agreement was o
served. In a previous study@22# it turned out that the use o
a finite Trotter number ofP5500 at a temperature o
T*50.03 and a progressive linear decrease ofP with in-
creasing temperature were sufficient to be in the largP
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limit as required in Eq.~3.2!. We note that other method
have been suggested for the path-integral simulation of r
tional degrees of freedom in two-dimensional@36# and three-
dimensional space@37#, respectively.

In the present paper we study in particular finite-size
fects on the quantum APR transition. The required differ
linear dimensionsL of the system were chosen to range fro
N 5 L2 5 144 to 900, where additional data from Ref.@22#
have been included in the analysis. We equilibrated the s
tems starting from the ideally ordered herringbone grou
state and made, where possible, use of previous runs eith
lower temperatures or smaller rotational constant. Our sta
tics is based on the order of 105 PIMC steps for each data
point; a typical CPU time per data point was of the order
50 h on a CRAY-YMP supercomputer.

B. Observables and estimators

The quantities we determined from the simulations are
kinetic and the potential energy, order parameter, quan
librational amplitudes, as well as fourth-order~3.11! and
second-order~3.12! cumulants.

The energies were obtained from the primitive estima
@29#, which proved to be sufficient in the present case@19#.
The kinetic energyEkin and the potential energyEpot per
particle are given by

Ekin5
PkBT

2
2K 1N (

j51

N

(
s51

P
IP

2\2b2

3@w j
~s!2w j

~s11!12njpds,P#2L , ~3.3!

Epot5K 1P(
s51

P
1

N(
^ j ,i &

N

V~w j
~s! ,w i

~s!!L , ~3.4!

and the total energyEtot is given by the sum ofEkin and
Epot. The estimator for the order parameter componentFa is
given by the expression

Fa5
1

NP (
j51

N

(
s51

P

sin~2w j
~s!22ha!exp@ iQa•Rj #,

~3.5!

which trivially follows from Eq. ~2.3!. In the following we
will use the total long-range order parameter defined as
length @19,12#

F5K F (
a51

3

Fa
2 G1/2L ~3.6!

of the three component vector order parameter~3.5!.
A quantity that measures the quantum delocalization

the rotational degrees of freedom can be defined by the
pression@19#

Rw5K 1N (
j51

N
1

P (
s51

P Fw j
~s!2

1

P(
k51

P

w j
~k!G2L 1/2

. ~3.7!
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55 2187QUANTUM FLUCTUATIONS DRIVEN ORIENTATIONAL . . .
This average spread is by its definition zero for a class
system and is thus a measure of the pure quantum cont
tion to the librations or rotations of the individual rotators

C. Finite-size scaling

An identifying characteristic of a continuous phase tra
sition is the divergence of the correlation lengthj at the
critical temperatureTc , with j;utu2n for t:512T/Tc ,
utu!1. Under these conditions on the reduced distance f
the phase transitiont>0, the order parameterF in the infi-
nitely large system depends ont asF;utub, wheren and
b denote here the usual critical exponents. In finite syste
of linear dimensionL the order parameter is given by th
expression@33#

^F&L5L2b/nF̃~L/j!, ~3.8!

whereF̃ is the scaling function that is associated toF. The
order parameter distribution functionPL(F) in the finite sys-
tem is thus a function of the scaling variablesLb/nF and
L/j,

PL~F!5Lb/nP̃~Lb/nF,L/j!, ~3.9!

and thekth moment of the order parameter distribution fun
tion is given by

^Fk&L5Lb/nE dF FkP̃~Lb/nF,L/j!5L2bk/nF̃k~L/j!,

~3.10!

where^&L denote the canonical average of a system of lin
dimensionL.

A very useful quantity for the determination of a critic
point that is directly based on order parameter moment
the fourth-order cumulant@32,33# UL

(4) or the second-orde
cumulant@38# UL

(2) defined as

UL
~4!512

^F4&L
3^F2&L

2, ~3.11!

UL
~2!512

^F2&L
3^F&L

2, ~3.12!

where one can see that the explicit dependence on sy
size drops out if thekth moments;L2bk/n are reexpressed
with the aid of Eq.~3.10! in terms of their scaling functions
We compile here only the main features and usage of th
quantities and refer for further details to the literatu
@32,33#.

In the case of second-order transitions, the cumula
adopt a nontrivial universal valueU* at the critical point,
irrespective of system sizes$L% in the scaling limit. Thus,
plotting UL

(4)(T) or UL
(2)(T) for different linear dimensions

as a function of temperature yields an intersection po
U(Tc)5:U* , which gives an accurate estimate of the critic
temperature in theinfinite system for a temperature-drive
second-order transition. Below and above the transition,
cumulants flow to trivial limiting values depending on th
definition of the order parameter; the larger the system,
faster the convergence. Instead of the temperature, othe
al
u-

-

m

s

-

r

is

em

se

ts

t
l

e

e
a-

rametrizations of approaching a critical point can also
chosen. More recently, it was worked out that the concep
order parameter cumulant crossings is also useful to ana
first-order phase transitions@39#. In this case, one can ob
serve aneffectivecrossing point at a nonuniversal valu
U* at the phase transition. The approach of both the tra
tion point and the value ofU at the transition to the infinite
system limit is quite fast: the correction depends, roug
speaking, on the inverse volume of the system@39#. Thus, for
practical numerical purposes the order parameter cumu
can be taken as acquiring an intersection point at a first-o
transition in a way similar to that occurring at a second-or
transition.

IV. MEAN-FIELD THEORY

In this section we start from the Hamiltonian~2.2! and
determine the phase diagram for our model using a me
field approximation. This consists of considering a sing
quantum rotator in the mean field of its six nearest neighb
and finding a self-consistent condition for the order para
eter. Solving the latter condition, we determine the ph
boundary and also the order of the transition. Our mean-fi
approximation is similar in spirit to that used in Ref.@31# for
the case of 3D rotators.

We shall assume that the order parameter compon
F1 becomes nonzero in the ordered phase,F156^sin2w&
Þ0 @we choose a positive sign for the single rotator, note t
the sign alternates passing from one row of the herringb
structure to another, see Eq.~2.3!#, while F25F350. Now
it is useful for a moment to return to normal~nonreduced!
units for Q, K, andT. In order to proceed, we write eac
interaction termKcos(2w12w824fij) as a product of trigo-
nometric functions depending separately on the angular v
ablesw of the single rotator andw8 of its nearest neighbors
Averaging over the variablesw8, we find the following con-
tributions: for the two terms corresponding tof i j50 we get
22KF1sin2w, for the two terms corresponding t
f i j5p/3 we get2KF1sin2w1A3KF1cos2w and for the
two terms corresponding to f i j52p/3 we get
2KF1sin2w2A3KF1cos2w. Summing these contribution
from all six nearest neighbors, we find the total mean-fi
potential acting on the single rotator, which reads

Hpot
MF524KF1sin2w. ~4.1!

Adding the kinetic energy, we get the corresponding o
particle Schro¨dinger equation for the on-site problem

HMFC5S 2Q
d2

dw2 24KF1sin2w DC5EC. ~4.2!

We now introduce the quantityq522KF1 /Q and perform
a trivial shift of the angular variablew by defining
u5w2p/4. In terms of these new variables, the eigenva
problem~4.2! can be written as

d2C

du2
1S EQ 22q cos2u DC50, ~4.3!

which is the well-known Mathieu equation@40#. Its eigenval-
ues can be labeled by a non-negative integer numberm, and
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for eachmÞ0 there are two eigenvalues:am(q), associated
with an even periodic solution, andbm(q), associated with
an odd periodic solution. Form50 there is just one eigen
valuea0(q) associated with an even periodic solution.

In order to find the self-consistent condition, we have
determine the order parameter

F15^cos2u&5
( i^C i ucos2uuC i&e

2bEi

( ie
2bEi

5
1

2

] f 0
]q

~4.4!

as a function of the parameterq. In Eq. ~4.4! we have used
the free energy per site defined asf 052(1/b)ln(ie

2bEi.
Solving Eq. ~4.4! simultaneously with the condition
q522KF1 /Q, we find the equilibrium value of the orde
parameter for given values of inverse temperatureb and
model parametersK,Q.

Because our main interest is to determine the ph
boundary and the order of the transition, we do not have
find the complete expression forF1(q). For a continuous
phase transition, the phase boundary is a curve in param
space on which a nontrivial and infinitesimally small so
tion F1Þ0 appears, apart from the trivial oneF150, which
is always present and corresponds to the disordered phas
order to determine the phase boundary and check the ord
the transition, it is enough to find an expansion ofF1 in
powers ofq up to the third order, which can be obtaine
from the expansion off 0 in powers ofq up to the fourth
order. The expansions of the eigenvalues of the Math
equation can be found in@40# and we quote here just firs
few of them, which have the form
ll
s
ry
or
se
e
e

o

y
n

in
e
to

ter

. In
of

u

a0~q!52
q2

2
1
7q4

128
2•••,

a1~2q!5b1~q!512q2
q2

8
1
q3

64
2

q4

1536
2•••.

~4.5!

For practical calculations in the low-temperature regio
we can truncate the infinite sum inf 0 and include only a
finite number of terms. Increasing the number of ter
would yield a progressively better approximation in the hig
temperature limit, but this is actually not necessary, since
this limit the quantum effects become negligible and t
model behaves classically. The classical model has alre
been investigated within various mean-field approximatio
in Ref. @41#. We have taken the eigenvalues corresponding
m<6. The first neglected eigenvalue then equals 72549 for
q50 and therefore our approximation should yield reliab
results up to temperatures that are at least an order of m
nitude lower than the first neglected term, therefore for te
peraturesT/Q<5. Substituting the energy eigenvalues e
pansions into Eq.~4.4! and calculating the free energyf 0 and
order parameterF1 ~the actual symbolic calculation has bee
performed byMATHEMATICA !, we find that the expansion o
the latter has the form

F15x1q1x3q
31•••, ~4.6!

where the coefficientsx1 andx3 are somewhat complicate
expressions. Combining the expression~4.6! with the equa-
tion q522KF1 /Q, we find that the condition for the phas
boundary is given byKc52Q/2x1. We quote here the fina
result forKc , which reads
Kc5
420QcZ6

4201210B1@~4Qc /Tc!11#2280B22105B3256B4235B5224B6
, ~4.7!
-
re,
nt
-
re-

are
tive

d on
ses,
ter-
sys-
the
ize,
ent.
em-
gh-
whereBm5exp@2m2Qc /Tc# andZ65(m526
6Bm .

We yet have to make sure that the transition is rea
continuous. The necessary and sufficient condition for thi
that the coefficientx3 is negative on the phase bounda
~4.7!. We have found this to be always satisfied. Theref
the phase boundary~4.7! corresponds to a continuous pha
transition. In the high-temperature classical limit this agre
with the finding in Ref.@41#. In order to map the phas
diagram in theQ* -T* plane, we have to setKc51 in Eq.
~4.7! and solve forTc* as a function ofQc* . This can be done
numerically and the resulting phase diagram is shown
Fig. 2.

V. RESULTS AND DISCUSSION

To start the discussion, we note that the present stud
the quantum APR model was partly motivated by the stro
changes in shape of the orientational order parameterF as a
function of temperature as the rotational constant was
creasing from its classical valueQ*50, see Fig. 3 in Ref.
y
is

e

s

n

of
g

-

@22#. For small enoughQ* it was found that the order pa
rameter decays monotonically with increasing temperatu
similarly to the classical case. This is qualitatively differe
for largerQ* , whereF(T* ) becomes a nonmonotonic func
tion of temperature. In the present paper, we study this
gime in much more detail and vary in addition toQ* as well
the linear dimensionL of the lattice.

In Fig. 1, the order parameter vs temperature curves
shown for different system sizes and for two representa
Q* choices:Q*50.6109 in Fig. 1~a! and 0.6982 in Fig.
1~b!. As can be seen from the data, in Fig. 1~a! the order
parameter at low temperatures has a nonzero value an
heating first increases up to a maximum and then decrea
which means that the system develops most order at in
mediate temperatures. The results obtained for different
tem sizes indicate that in the high-temperature region
order parameter scales to zero with increasing system s
whereas the maximum value is system size independ
Therefore, there is a long-range ordered phase at low t
peratures present in addition to the disordered hi
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temperature phase. This orientational ordering that ta
place with decreasing temperature results in the li
Q*→0 in the classical APR transition and the well-defin
herringbone ordered ground state. This picture chan
however, as the quantum fluctuations get more pronoun
When the value ofQ* is increased further, the maximum
value of the long-range order parameter drops consider
with increasing system size, as can be seen
Q*50.6982 from Fig. 1~b!. The order parameter at our low
est temperatures is now strongly depressed and also
creases further with increasing linear dimension of the s
tem. The finite-size effects in this intermediateQ* range are
thus pronounced not only at the high-temperature wing of
order parameter vs temperature curve, but atall temperatures
and in particular also close to the maximum of the ord
parameter. This is already a hint that the residual orde
this range ofQ* values might actually be a finite-size art
fact. From the previous study@22# we know that a further
increase inQ* would suppress the ordering even more a
finally lead to a situation with vanishing order parameter
any temperature. All this motivated us to analyze the beh
ior of the system further in order to see whether t
intermediate-temperature maximum and low-temperature
duction of ordering, suggestive of a reentrant orientatio
melting, are really associated with the latter phenomenon
order to answer such a question one has to employ finite-
scaling techniques that would allow us to find out whethe
particular phase transition is present, and if so, to locate

Before we start with the numerical finite-size scali
analysis of the PIMC data, let us pause for a moment
discuss the mean-field predictions from Sec. IV. The res

FIG. 1. Orientational order parameterF as a function of tem-
perature. Symbols indicate different system sizes, statistical e
bars are shown, and lines are for visual help only. The values o
rotational constants are~a! Q*50.6109 and~b! Q*50.6982.
es
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ing phase diagram in theQ* -T* plane is shown in Fig. 2
with the solid line. We note that in the classical limiting ca
Q*→0 we findTc*52, which agrees with earlier mean-fiel
calculations@41#. Any crossing of the phase boundary in th
mean-field phase diagram Fig. 2 corresponds to a sec
order phase transition; note that it is believed@12,5# that for
Q*50, the classical APR model undergoes a fluctuatio
driven weak first-order transition atT*'0.76 forL→`. We
see that at zero temperature there is a quantum phase tr
tion at the value ofQc*

MF51. The most interesting feature o
the phase diagram is that there is a region of rotational c
stants ranging from 1 to roughly 1.25 for which the system
ordered at intermediate temperatures but disordered in
ground state~reentrance!. The intuitive explanation of this
phenomenon is the following. At low temperatures, the in
vidual rotors are mostly in their totally rotationally symme
ric ground state, which does not possess quadrupolar
ment and therefore cannot induce ordering via
quadrupolar term. At intermediate temperatures, the exc
states with nonzero quadrupolar moment become popul
and induce ordering that persists to larger values of the r
tional constant. According to the mean-field theory, ree
trance takes place for a rather broad range of rotational c
stants 1,Q*,1.25. This corresponds to a decrease of
critical rotational constant by roughly 20% from its max
mum value of about 1.25 to the value of 1 at the ground-s
transition and represents a well-pronounced feature. C
cerning the validity of this mean-field result, it is known th
the mean-field approximation sometimes tends to over
phasize or even create reentrant behavior, as pointed o
Ref. @24#. On the other hand, reentrant behavior has b
experimentally observed in solid HD under compress
@42#. This three-dimensional system, however, although c
sisting of diatomic molecules interacting via approxima
quadrupolar interactions, differs fundamentally from o
model in spatial dimensionality and structure of the lattice
well as in the dimensionality of the order parameter. In ord
to settle the question of reentrance in the 2D quantum A
model, we present now the results of numerical simulatio
and analysis techniques.

or
e

FIG. 2. Phase diagram of the quantum APR model in
Q* -T* plane. The solid curve shows the line of continuous ph
transitions from an ordered phase at low temperatures and s
rotational constants to a disordered phase according to the m
field approximation. The symbols show the transitions found by
finite-size scaling analysis of the path-integral Monte Carlo da
The dashed line connecting these data is for visual help only.
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We start with the results for potential, kinetic, and to
energies of our model. These are presented in Figs. 3 a
for two representative casesQ*50.6109 andQ*50.6982,
respectively. In both cases the potential energy first
creases with temperature until maximum order is achiev
while the kinetic energy increases strongly in this region. F
larger temperatures bothEpot andEkin increase with tempera
ture. Thus, when the temperature is increased from zero
rotators occupy higher rotational states, which allow
more pronounced orientational ordering compared to tha
the ground state. In these ordered states the attractive
drupolar interaction is larger, resulting in a lower potent
energy, and the kinetic energy increases strongly with te
perature due to enhanced localization of the rotators al
some direction. This scenario continues with temperature
til maximum order is achieved. A further increase of te
perature results in an increase ofEpot due to thermal disor-
der, making the quadrupolar interaction less import

FIG. 3. Energies as a function of temperature for the rotatio
constantQ*50.6109:~a! potential energyEpot , ~b! kinetic energy
Ekin , and ~c! total energyEtot . Symbols indicate different system
sizes and lines are for visual help only.
l
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r
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in
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t

compared to the thermal energy. This can finally lead t
phase transition from the low-temperature orientationally
dered phase to a high-temperature disordered phase,
vided the rotational constant does not exceed a certain va
At very low temperatures the slope of the total energy a
function of temperature, i.e., the specific heat, approac
zero, as expected for quantum systems. We did not fin
strong size dependence ofEtot(T* ) and thus the specific-hea
behavior also does not seem to depend on the system s

Similar to the total energy, the average spreadRw , which
is a measure of the quantum-mechanical delocalization of
rotators, is not dependent on system size as shown in Fi
As can be seen from its definition~3.7! this quantity is a
single-particle property that is by construction not partic
larly sensitive to collective effects. The spread approache
classical limit, i.e., zero, for large temperatures, the appro
being slower for largerQ* . In the limit of low temperatures
it reaches a ground-state value that is larger than 90° for

l
FIG. 4. Energies as a function of temperature for the rotatio

constantQ*50.6982:~a! potential energyEpot , ~b! kinetic energy
Ekin , and ~c! total energyEtot . Symbols indicate different system
sizes and lines are for visual help only.
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FIG. 5. Average spreadRw in degrees as a function of temper
ture. The values of the rotational constants are~a! Q*50.6109 and
~b! Q*50.6982. Symbols indicate different system sizes and li
are for visual help only.
by
-
rly
rotational constantQ*50.6982, which means that an ind
vidual rotator is no more confined to perform librational m
tion around a preferred orientation, but is instead stron
delocalized. On the other hand, we know already from F
1~b! that the order parameter is vanishingly small at lo
temperatures and decreases even more with increasing
tem size for this value ofQ* . The behavior of the averag
spread is thus a clear demonstration that it is the quan
tunneling that induces the disordering of the ground state
sufficiently large rotational constants.

In order to finally address the question whether our s
tem has a reentrant phase transition as predicted by
mean-field study we analyzed the low-temperature region
the cumulant intersection finite-size scaling method
scribed in Sec. III C; see Figs. 6–8. For our smallest ro
tional constantQ*50.6109 we clearly find an intersectio
point for bothUL

(4) andUL
(2) at aboutT*'0.30; see Figs.

6~a! and 7~a!. For the larger rotational constan
Q*50.6364 @Figs. 6~b! and 7~b!#, the intersections of the
fourth- and second-order cumulants occur again both at
same value within the error bars. These crossings arise
cause the cumulants for larger systems approach their li
ing values faster than those for smaller systems.
Q*50.6666 the cumulants on the different length scales
low temperatures have values that cannot be distinguis
within the error bars; see Figs. 6~c! and 7~c!. The large value
of U*'0.65 that was found for the classical APR mod
@12# causes here the problem that within our numerical
curacy we cannot identify an intersection point, but rath
obtain a whole temperature region that is characterized
pronounced fluctuations. For largerQ* constants the behav
ior of the two cumulants can again be distinguished fai
well. However, contrary to what we found forQ*<0.6364,

s

t
.
-

d

FIG. 6. Fourth-order cumulan
UL
(4) as a function of temperature

The values of the rotational con
stants are~a! Q*50.6109, ~b!
Q*50.6364, ~c! Q*50.6667,
and ~d! Q*50.6982. Symbols in-
dicate different system sizes an
lines are for visual help only.
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FIG. 7. Second-order cumu
lantUL

(2) as a function of tempera
ture. The values of the rotationa
constants are~a! Q*50.6109,~b!
Q*50.6364, ~c! Q*50.6667,
and ~d! Q*50.6982. Symbols in-
dicate different system sizes an
lines are for visual help only.
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nge
the larger system now has the smaller cumulant through
the whole temperature range; see Figs. 6~d! and 7~d!. This
signals the presence of the orientationally disordered ph
for Q*50.6982 that extends from the ground state up
high temperatures. From this behavior of the cumulants
conclude that there is no evidence for the reentrance tra
tion but rather a pronounced increase of short-range orde
ut

se
o
e
si-
at

intermediate temperatures in the neighborhood of the ph
boundary line. The latter has at low temperatures a roug
vertical ~i.e.,Q* independent! slope rather than the charac
teristic shape suggested by the mean-field result in Fig.

In order to reinforce such a conclusion for this part of t
phase boundary we also studied the cumulants as funct
of the rotational constant at constant temperature in the ra
t

-

s

FIG. 8. Fourth-order cumulan
UL
(4) as a function of rotational

constant. The values of the tem
perature are~a! T*50.1515, ~b!
T*50.1818,~c! T*50.2121, and
~d! T*50.2424. Symbols indicate
different system sizes and line
are for visual help only.



w
a
t
nt
a
n
e

ro
ic

e
ro

ti-
ra
ly
fe
t

lin
n
re
el
in
te
n
ed
nt

te
ica

th
ru
an
ca
e
ta
A
ra
re
n
w

gher
the
s-

us-
n
re-
d. It
ast
s,
nd

ny
, at
ime
ibi-
t to
PR
in-
se
nts
lue

udy.
ting
ef-
e
by
tion
uc-
en
es.

are

i-
than
t 3

o-
-
on

55 2193QUANTUM FLUCTUATIONS DRIVEN ORIENTATIONAL . . .
T*<0.2424. The fourth-order cumulant plots of Fig. 8 sho
that the intersection occurs in this low-temperature range
value of aboutQ*'0.66760.015, which stays constan
within the numerical noise; the second-order cumula
UL
(2) show the same behavior. Note that a systematic incre

followed by a decrease of this quantity is expected as a fu
tion of temperature if reentrance does occur. We can furth
more infer that the nontrivial valueU* of the cumulants at
crossing is also in this low-temperature regime with p
nounced tunneling and quantum effects within the numer
accuracy identical to the valueU*'0.65 found for the clas-
sical APR phase transition@12#. We are thus lead to conclud
that the APR transition temperature decreases slowly f
its classical limit value ofT*'0.76 atQ*50 down to about
T*'0.24 atQ*'0.67, where it suddenly drops drama
cally. This numerically obtained nonreentrant phase diag
is included in Fig. 2. The PIMC simulation results clear
exclude the existence of a strongly pronounced reentrant
ture in the phase diagram. Of course, we cannot exclude
possible existence of a narrow reentrance region fal
within the error bars of the present data. However, in a
case these error bars are much smaller than the 20% dec
of the critical rotational constant predicted by the mean-fi
theory. The latter approximation is successful in predict
the phenomenon of enhanced ordering at intermediate
peratures, but the deficiency is that it exaggerates the ra
of order and incorrectly predicts it to become long rang
As can be seen from Fig. 2, the mean-field theory appare
treats the quantum fluctuations~the limit T*→0) better than
the thermal fluctuations~the limit Q*→0) since the transi-
tion point of the quantum-induced transition is overestima
only by a factor of about 1.5, whereas the purely class
transition is off by a factor of more than 2.

VI. SUMMARY AND CONCLUSIONS

We have studied the quantum generalization of
anisotropic-planar-rotor model consisting of point quad
poles that are pinned with their center of rotation on a tri
gular lattice. This two-dimensional statistical-mechani
model system exhibits interesting orientational ordering
fects, as a function of temperature and the rotational cons
that controls the strength of the quantum fluctuations.
mean-field study predicts for this quantum system a reent
orientational order-disorder transition with a pronounced
entrance region. Thus, in an intermediate range of rotatio
constant values at low temperatures the system orders
t a

s
se
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r-

-
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g
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increasing temperature and then disorders again at hi
temperatures via a phase transition, which corresponds to
well-known herringbone orientational transition in the cla
sical limit.

We studied the quantum APR model also numerically
ing path-integral Monte Carlo simulations in combinatio
with a finite-size scaling analysis in order to explore the
gion of the phase diagram where reentrance is expecte
turned out that no reentrant transition is present, at le
within the usual numerical limitations of such simulation
which are most importantly set by the statistical errors a
limited system sizes concerning both theN and P dimen-
sionalities. In order to determine whether there still is a ti
reentrance region hidden within our numerical accuracy
least an order of magnitude larger amount of computer t
would be required, which at present seems to be proh
tively expensive. For the same reason we did not attemp
address the issue of the order of the quantum-induced A
phase transition in the ground state. We could, however,
fer that the nontrivial cumulant values at the APR pha
transition at low temperatures and large rotational consta
are within the estimated uncertainty identical to the va
obtained in the classical limit.

There are several possibilities to extend the present st
Concerning the problem of reentrance in systems consis
of quantum rotators, it might be interesting to study the
fect of higher multipole interactions. In addition, it would b
desirable to go beyond the mean-field approximation
means of analytical techniques, such as, renormaliza
techniques capable of including accurately the quantum fl
tuations. Finally, it is certainly desirable to develop ev
more efficient quantum simulation and analysis techniqu
All this demonstrates that investigations ofphase transitions
in quantumsystems with continuous degrees of freedom
even today still a challenge.

Note added in proof. Recently, we found that the statist
cal error bars presented in the figures are actually larger
the true ones. The true error bars are a factor of abou
smaller than those shown in the figures.
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