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Quantum fluctuations driven orientational disordering: A finite-size scaling study
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The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-
rotor model in the low-temperature regime. The phase diagram of the model is first analyzed within the
mean-field approximation. This predicts B0 a phase transition from the ordered to the disordered phase
when the strength of quantum fluctuations, characterized by the rotational cobstexteeds a critical value
@2"F. As a function of temperature, mean-field theory predicts a range of valués where the system
develops long-range order upon cooling, but enters again into a disordered state at sufficiently low tempera-
tures(reentrance The model is further studied by means of path-integral Monte Carlo simulations in combi-
nation with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is
predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant
behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a
genuine long-range ordeiS1063-651X%97)04802-3

PACS numbe(s): 05.70.Fh, 05.36-d, 64.60.Cn, 68.35.Rh

I. MOTIVATION as multipole interactions other than those of quadrupolar
symmetry[14,16. Simplified Hamiltonians were obtained
Physisorbates are experimental realizations of quasi-twaafter discretizing the continuous rotations to an anisotropic
dimensional systems that display an extremely rich phaseix-state model17] or to more general discrete modéis3].
behavior due to the competition between intermolecular andVe introduced quantum generalizations of interacting two-
molecule-surface interactions, as documented, e.g., in Refdimensional quadrupolar lattice systefi®,20], in particu-
[1-5]. Correspondingly, there is a wealth of phase transitiondar of the APR mode[21,22. For a given lattice, the classi-
between the various ordered phases as a function of tempereal APR model has no free parameter because the
ture and coverage. Since many of these transitions occur guadrupolar coupling constaht only sets the energy scale
fairly low temperatures, quantum effects might play an im-of the model. Correspondingly, the phase diagram is one
portant or even crucial rolg3,4], as recently demonstrated dimensional and is fully characterized by a single number,
for the ordering of hydrogen isotopes on graphisé Mo-  the transition temperature scaled by the conskantn the
lecular systems are particularly interesting as they possespiantum case, however, the quantum kinetic energy is deter-
orientational degrees of freedom that can order in addition tanined by the mechanical moment of inertiassociated with
the positions[5]. In the case of linear molecules, the the angular motion of the two-dimensional rotators. The re-
anisotropic-planar-rotofAPR) model [7,8] was devised to sulting rotational constar®=#2/2| is an additional inde-
describe the herringbonéguadrupolar orientational two- pendent parameter that determines the strength and energy
sublattice ordering transitior{5], e.g., in commensurate,N scale of the quantum fluctuations, and in the li@it-0 the
monolayers on graphite. The classical two-dimensional APRjuantum APR model reduces to the classical one. The result-
model consists of planar rotators pinned with their center ofng behavior of the quantum APR model is governed by the
rotation on a triangular lattice and interacting via nearestinterplay between thermal and quantum fluctuations. This in-
neighbor quadrupolar interactions only; a three-dimensionaleresting feature is present also in other systems, such as
version has also been proposed and investigated in variousing models in transverse fie]@3,24], models for granular
approximationg9]. superconductor®5] and superconducting arral26], lattice
Over the years the APR Hamiltonian acquired the statug)* theory[27], and quantum four-state clock modé2s];
of a statistical-mechanicahodelin its own right; see Refs. see Ref[22] for a short discussion of these related models.
[10,5]. Many of these activities arose because the order of In our previous studie$21,22 we presented an initial
the APR phase transition turned out to be extremely chalgualitativeexploration of the two-dimension&D) quantum
lenging to determingll], finally favoring a first-order phase APR Hamiltonian, using path-integral Monte CafIMC)
transition that is “weak” and fluctuation drivefi2]; see the  simulations[29] adapted to rotational motion restricted to
detailed review in Ref[5]. The plain APR model was gen- two dimensiong30]. It was demonstrated numericallg2]
eralized to include vacancies or impurities3—15, as well  that low-order approximation schemes such as quasiclassical
Monte Carlo simulations using the quadratic Feynman-Hibbs
effective potential, and the simple quasiharmonic approxima-
*Permanent address: Department of Physics, Faculty of Electricdlon are useful only in the regime of small rotational con-
Engineering, Slovak Technical University, llkoeiea 3, 812 19 stants®—0, whereas they fail completely in the lar@e-
Bratislava, Slovakia. range that is of interest here. The phase boundaries were
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estimated phenomenologically from the behavior of the ordepf the APR mode[7,8]. The classical APR Hamiltonian was
parameter, i.e., without applying any kind of finite-size scal-extensively studied over the years, both numerically and ana-
ing to the data obtained from 38 900 interacting rotators. Iytically; see Ref.[5], where the properties of the classical
Increasing the value dP, four distinct regimes were found model including the order parameter and the herringbone
based on the shape of the orientational order parameter. Forientationally ordered ground state are discussed. Nhe
small ®, the transition temperature and value of the groundquadrupolar rotators are fixed with their center of mass on an
state order parameter obtained from the classical model gédeal rigid triangular latticlR;} and only rotations in the
renormalized just to smaller values. In the opposite limit oftwo-dimensional surface plane are allowed. The interactions
large®, the quantum fluctuations are that strong that they dare truncated at the first-neighbor shell and the rotators inter-
not allow for any ordering even in the ground state. Moreact exclusively with their six nearest neighbors via the aniso-
interesting are the intermediate regimes. For increa®irg  tropic part of a quadrupole-quadrupole potential of strength
crossover was found where there is residual ground-state ok in two dimensions. The quantum generalization results
der, although significantly depressed from its classical valueafter supplementing this classical Hamiltonian with a non-
but the order parameter inside the ordered phase ifirst commuting angular momentum parfl;,¢i]=—i%4;
creasesupon heating and goes through a maximum at somevhich introduces quantum dispersion and thus qualltatlvely
intermediate temperature before it decays in the disorderegifferent effects due to additional fluctuations and tunneling.
phase. For even largéd, there seemed to be a region in Correspondingly, the quantum APR Hamiltonian reads
parameter space with vanishing ground-state order together

with residual order at finite temperatures. The “tentative and N2 N

qualitative phase diagram” in th@-T plane thus seemed to 2 _‘ z V(gj,¢) (2.2
exhibit a reentrancephenomenon in a range @ where =12l 7

guantum and thermal fluctuations are competitive; see Fig. 9

in Ref. [22]. A similar behavior was already discovered in N o 2 N

mean-field studies of certain quantum Ising modgdd], =—0 ——5+K2, co82¢;+2¢;—4d;,),
guantum four-state clock models with quadrupolar interac- j=1 09 Ny

tions[28], and interacting 3D quadrupolar rotat¢&l]. The 2.2

reentrance in the two-level systems was also found to be

present when fluctuations were included to lowest order invhere the anglep; of the jth rotator pinned at sitd; is

the form of a Kirkwood correction on top of the Bragg- defined relative to one symmetry axis of the triangular lattice

Williams expressiong24]. The reentrance in the three- and the six phaseg; ; measure the angle between neighbor-

dimensional system was ascribed in R&fl] to two distinct ing sites R; and R; on this lattice, i.e., ¢;;

first-order phase transitions, a standard order-disorder transg {0,7/3,27/3,m,4/3,57/3}. We stress that for this sys-

tion at higher temperatures that is also present in the corrdem the triangular lattice structure is essential in order to

sponding classical model, and a transition of pure quanturproduce a nontrivial ordered phase. On a simple square lat-

nature at low temperatures. tice the quadrupolar interaction would just favor unfrustrated
With the present paper, we concentrate on the region oferpendicular nearest-neighbor orientations of the character-

the phase diagram of the 2D quantum APR model wheréstic T shape.

reentrance might be expected to occur. We use first a mean- The moment of inertid determines the rotational con-

field approximation and then a PIMC simulation. The aim ofstant ® =#2/21, which is the parameter that controls the

the work is to study the orientational transition behavior instrength of quantum effects. The other parameter of the

the reentrance regime. In particular, we are interested to finchodel, which is the quadrupolar coupling constnican be

out whether there are actually two distipiase transitions conveniently taken as the energy and temperature scale. We

occurring as a function of temperature. To this end, we simuean thus reduce all quantities related to energieKbgnd

late the system on several length scales and use finite-sizkefine, e.g., the dimensionless temperaflite=kgT/K, en-

scaling, in particular Binder's cumulap82,33, to analyze ergy E* =E/K, and rotational constar®* = 0/K.

the order parameter distributions. The long-range order parameter sensitive to herringbone
The main body of the paper is organized as follows. Theordering of the rotational axis has three= 1,2,3) indepen-

guantum APR model together with its order parameter igdlentcomponents

defined in Sec. Il. In Sec. lll A, the quantum PIMC simula-

tion technique is described, followed by the definition of the

relevant observables in Sec. Il B and an outline of the finite-

size scaling analysis method in Sec. Il C. The mean-field

approximation is worked out in Sec. IV. In Sec. V, the re-

sults of the simulation are discussed and compared witlwhere

those of the mean-field approximation and a possible sce-

N
2, sin2¢,=2n,)exliQuR]. (23

Z|I—‘

nario is suggested. In Sec. VI, we summarize the results and Q.= (0 21\3) 7m=0
draw some conclusions. ' ’
II. QUANTUM ANISOTROPIC-PLANAR-ROTOR MODEL Q,=m(—1,— 1/\/§), n,=2ml3,

The subjects of this study are the properties and in par-
ticular the phase diagram of the quantum-mechanical version Qz;=m(1,— 11\/3), n3=4m/3. (2.9
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. NUMERICAL METHODS limit as required in Eq(3.2. We note that other methods

have been suggested for the path-integral simulation of rota-
tional degrees of freedom in two-dimensiofiaé] and three-

We study the properties of the Hamiltonig®.2) by dimensional spacg37], respectively.
means of PIMC simulations; for general reviews on the con- |n the present paper we study in particular finite-size ef-
cept of PIMC we refer to Re{29]. We just stress here that fects on the quantum APR transition. The required different
for rotational motion in two dimensions different features |inear dimensiong of the system were chosen to range from
connected to the restricted integration space show up in thg = L2 = 144 to 900, where additional data from REZ2]
formalism[34]. This latter aspect and our implementation of have been included in the analysis. We equilibrated the sys-
these specialties in a PIMC scheme is discussed in detail igms starting from the ideally ordered herringbone ground
Ref.[19], and here we present only the essential features. state and made, where possible, use of previous runs either at

In general, the partition function of a Hamiltonian of type Jower temperatures or smaller rotational constant. Our statis-
(2.1 is given by tics is based on the order of 1®IMC steps for each data
point; a typical CPU time per data point was of the order of

A. Path-integral Monte Carlo simulation technique

Z=Trexd —pH] 3D 50h ona CRAY-YMP supercomputer.
| P NP/2
= R B. Observables and estimators
F','”L( 2 ﬁzﬂ) ’ |

The quantities we determined from the simulations are the
kinetic and the potential energy, order parameter, quantum
} librational amplitudes, as well as fourth-ordé3.11) and
second-orde(3.12 cumulants.

i=—00

N %o o P o
1
X | > def"T1 “ def®
n; 0 s=2 —©

PN |p The energies were obtained from the primitive estimator
xexpl =B 2 | > moz[¢¥— ¥t V420 w8, p] 2 [29], which proved to be sufficient in the present cas@].
&1 =m2hptt ! . s The kinetic energyEy;, and the potential energg,, per
N particle are given by
2 1 (s) (s
+<j,i)EV((Pj @) | 1 (3.2 e PkBT_ l % 2 P
kin™ "2 N 5161 20°8
WhereV(goJ(S) ,0!¥) denotes the APR pair potential of Eq.
(2.2 evaluated separately for the configuration at each (9 (s+1) )
imaginary time slics=1, . . . P. Each quantum-mechanical X[ej =@ V420785 p]7 ), 33

rotational degree of freedom is represented in this path-
integral representation by classical rotators that form p N
closed loops and interact via harmonic-type interactions; for E - EE EE V(g™ o) (3.4)
the related ring-polymer picture see Rdf35,29. The pa- Pt \ p&y NG #@ ' ’
rameter P is the Trotter number, the configuration

{e7,¢{?, ... ,0{"} is a realization of a Trotter path, and and the total energf,, is given by the sum of,;, and
the path integral results from the proper integration and SUME,, . The estimator for the order parameter comporepis
mation over all possible paths. However, contrary to paﬂgiven by the expression

integrals for translational degrees of freedom, these loops do

not need to be closed using periodic boundary conditions, 1 NP

but only mod 2r; note that the classical angles® of Eq. .= 15 Zl 21 sin(2¢}¥—27,)exdiQ, R;],
(3.2) are not confined td0, 27) but are allowed on the I=1s

whole intervall —,]. The resulting mismatch; is called 3.9

the “winding number” of thejth path[34] and the formu- ) . ,
lation (3.2) is the “winding number representation” of the which trivially follows from Eq.(2.3). In the following we

3
> @l
a=1

partition function. Only the Boltzmann-weighted summationWill use the total long-range order parameter defined as the
over all possible winding numbers in addition to the integra-'€ngth[19,12
tion over all paths having a certain winding number yields 1o

the correct quantum partition function in the Trotter limit

P—cc; see Ref[19] for a full discussion of that issue. Thus q>=< > (3.6

we have to include in the algorithm, in addition to local and

global moves of the angular degrees of freedast}, als0  f the three component vector order paramées).

attempts to change the winding numbgrg} of the indi- A quantity that measures the quantum delocalization of
vidual rotators. Our algorithm was teste#D,19 against ex- e rotational degrees of freedom can be defined by the ex-
act (single-particle results and a close agreement was Ob'pressior{19]

served. In a previous stud®2] it turned out that the use of

a finite Trotter number ofP=500 at a temperature of 1 1 P 1P 2\ 12
T*=0.03 and a progressive linear decreasePoWith in- R =(= 2 l E P> o . (3.7
creasing temperature were sufficient to be in the ld&ge- A\N=ZP &S| PETY
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This average spread is by its definition zero for a classicatametrizations of approaching a critical point can also be
system and is thus a measure of the pure quantum contribghosen. More recently, it was worked out that the concept of
tion to the librations or rotations of the individual rotators. order parameter cumulant crossings is also useful to analyze

C. Finite-size scaling

An identifying characteristic of a continuous phase tran-

sition is the divergence of the correlation lengthat the
critical temperatureT,, with &~|t|~” for t:=1-T/T,,
[t|<1. Under these conditions on the reduced distance fro
the phase transitiote=0, the order parameteb in the infi-
nitely large system depends d¢ras ®~|t|?, where v and

B denote here the usual critical exponents. In finite system

of linear dimensionL the order parameter is given by the
expressior] 33]

(@) =L A"D(LI¢), 3.9

whered is the scaling function that is associated®o The
order parameter distribution functid?) (®) in the finite sys-
tem is thus a function of the scaling variable§'*® and
L/¢,

PL(®)=LA"P(LA"D L/¢), (3.9
and thekth moment of the order parameter distribution func-
tion is given by
(DK, = Lﬁ’Vf dd BKP(LAYD,LIE)=L AP (LIE),
(3.10

first-order phase transitior{89]. In this case, one can ob-
serve aneffective crossing point at a nonuniversal value
U* at the phase transition. The approach of both the transi-
tion point and the value df) at the transition to the infinite
system limit is quite fast: the correction depends, roughly
speaking, on the inverse volume of the sysf&®. Thus, for

rBractical numerical purposes the order parameter cumulant

can be taken as acquiring an intersection point at a first-order
transition in a way similar to that occurring at a second-order
ftansition.

IV. MEAN-FIELD THEORY

In this section we start from the Hamiltonid@.2) and
determine the phase diagram for our model using a mean-
field approximation. This consists of considering a single
guantum rotator in the mean field of its six nearest neighbors
and finding a self-consistent condition for the order param-
eter. Solving the latter condition, we determine the phase
boundary and also the order of the transition. Our mean-field
approximation is similar in spirit to that used in RE31] for
the case of 3D rotators.

We shall assume that the order parameter component
&, becomes nonzero in the ordered phabe= = (sin2p)
#0[we choose a positive sign for the single rotator, note that
the sign alternates passing from one row of the herringbone
structure to another, see EQ.3)], while ®,=®d3;=0. Now
it is useful for a moment to return to normaionreducey

where(), denote the canonical average of a system of lineaunits for ®, K, andT. In order to proceed, we write each

dimensionL.
A very useful quantity for the determination of a critical

interaction termKcos(2p+2¢’ —4¢;) as a product of trigo-
nometric functions depending separately on the angular vari-

point that is directly based on order parameter moments igbles¢ of the single rotator ang’ of its nearest neighbors.

the fourth-order cumular{t32,33 U or the second-order
cumulant[38] U{? defined as

CI)4
uP=1- 3<<<I>2>>LL’ (3.10)
(@)
U= a0y (3.12

where one can see that the explicit dependence on system

size drops out if thé&th moments~L ~#¥” are reexpressed

with the aid of Eq.(3.10 in terms of their scaling functions.
We compile here only the main features and usage of the

qguantities and refer for further details to the literature

[32,33.

In the case of second-order transitions, the cumulants

adopt a nontrivial universal valug* at the critical point,
irrespective of system sizg4 } in the scaling limit. Thus,
plotting U{*(T) or U{®(T) for different linear dimensions

Averaging over the variableg’, we find the following con-
tributions: for the two terms correspondingdg =0 we get
—2K®d;sin2p, for the two terms corresponding
oij= w3 we get —K®,sin2p+/3Kd,cos2p and for the
two terms corresponding to ¢;;=27/3 we get
—K®,sin2p—+/3K®,c0s2. Summing these contributions
from all six nearest neighbors, we find the total mean-field
potential acting on the single rotator, which reads

to

MF _

H pot

—4K®P;sin2¢. 4.1

Adding the kinetic energy, we get the corresponding one-

S%article Schrdinger equation for the on-site problem

2

de

HMsz(— 2—4K®1Sin2<p)\lf=E‘I'. 4.2
We now introduce the quantity= —2K®,/® and perform
a trivial shift of the angular variablep by defining

0= ¢— m/4. In terms of these new variables, the eigenvalue

as a function of temperature yields an intersection poinproblem(4.2) can be written as

U(T.)=:U*, which gives an accurate estimate of the critical

temperature in thénfinite system for a temperature-driven

second-order transition. Below and above the transition, the

cumulants flow to trivial limiting values depending on the

d>w
—+

402 4.3

E
—2q cosZH)\Isz,

definition of the order parameter; the larger the system, thahich is the well-known Mathieu equati¢aQ]. Its eigenval-
faster the convergence. Instead of the temperature, other paes can be labeled by a non-negative integer numbeamnd
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for eachm+0 there are two eigenvalues;,(q), associated q®> 7q9*
with an even periodic solution, ar,(q), associated with ao(q)=— 7+ 128
an odd periodic solution. Fan=0 there is just one eigen-
valueag(q) associated with an even periodic solution. > 9 q*
In order to find the self-consistent condition, we have to a(—@)=by(q)=1-0- o+ 5775357
determine the order parameter (4.5

For practical calculations in the low-temperature region,
_BE we can truncate the infinite sum ify and include only a
A, . BE; . .
q)l:<coszﬁ>:E(\If,lcosZ_Hl\éf,)e :1‘9_](0 (4.4) finite number of terms. Increasing the number of terms
DI 2 99 would yield a progressively better approximation in the high-
temperature limit, but this is actually not necessary, since in
as a function of the parametqr In Eq. (4.4 we have used this limit the quantum effects become negligible and the
the free energy per site defined &s=—(1/8)Ins;e #5. ~ model behaves classically. The classical model has already
Solving Eg. (4.4 simultaneously with the condition been investigated within various mean-field approximations
q=—2K®, /0, we find the equilibrium value of the order in Ref. [41]. We have taken the eigenvalues corresponding to
parameter for given values of inverse temperatgrand m=6. The first neglected eigenvalue then equdls 49 for
model parameterk,®. g=0 and therefore our approximation should yield reliable
Because our main interest is to determine the phaskeSults up to temperatures that are at least an order of mag-
boundary and the order of the transition, we do not have t&itude lower than the first neglected term, therefore for tem-
find the complete expression fdb,(q). For a continuous perat_ures‘_l’/$5. Substituting thg energy eigenvalues ex-
phase transition, the phase boundary is a curve in parametBgnsions into Eq4.4) and calculating the free energy and
space on which a nontrivial and infinitesimally small solu-order parameted, (the actual symbolic calculation has been
tion ®,+0 appears, apart from the trivial odg =0, which performed byMATHEMATICA ), we find that the expansion of
is always present and corresponds to the disordered phase. i latter has the form
order to d_e_term_lng the phase bogndary and che_ck the prder of Dy =x19+ xaq3+ - -, (4.6)
the transition, it is enough to find an expansiond®f in
powers ofq up to the third order, which can be obtained where the coefficienty,; and y; are somewhat complicated
from the expansion of in powers ofq up to the fourth expressions. Combining the expressidm6) with the equa-
order. The expansions of the eigenvalues of the Mathietion q=—2K®,/0, we find that the condition for the phase
equation can be found ip40] and we quote here just first boundary is given bK.= —®/2y,. We quote here the final

few of them, which have the form result forK., which reads
|
< 4200 Z .
¢~ 420+ 210B,[ (40, /T,) + 1]— 2808, — 105B;— 56B,— 358, — 248’ “.7
|
whereB,,=exd —n?0O./T.] andZs==,,- _¢°B,,. [22]. For small enougl®* it was found that the order pa-

We yet have to make sure that the transition is reallyrameter decays monotonically with increasing temperature,
continuous. The necessary and sufficient condition for this igimilarly to the classical case. This is qualitatively different
that the coefficienty; is negative on the phase boundary for larger®* , where®(T*) becomes a nonmonotonic func-
(4.7. We have found this to be always satisfied. Thereforgjon of temperature. In the present paper, we study this re-
the phase boundarig.?) corresponds to a continuous phasegime in much more detail and vary in addition® as well
transition. In the high-temperature classical limit this agreesphe linear dimensio. of the lattice.
with the finding n 5ef.[41]. In order to map the phase |, Fig. 1, the order parameter vs temperature curves are
diagram in the®* -T* plane, we have to sé.=1 in EG.  ghown for different system sizes and for two representative
(4.7) and solve fofT¢ as a function oB¢ . This can be done g« choices:®* =0.6109 in Fig. 1) and 0.6982 in Fig.

numerically and the resulting phase diagram is shown OQ(h). As can be seen from the data, in Figailthe order

Fig. 2. parameter at low temperatures has a nonzero value and on
heating first increases up to a maximum and then decreases,
which means that the system develops most order at inter-
mediate temperatures. The results obtained for different sys-
To start the discussion, we note that the present study dbm sizes indicate that in the high-temperature region the
the quantum APR model was partly motivated by the strongprder parameter scales to zero with increasing system size,
changes in shape of the orientational order paranietas a  whereas the maximum value is system size independent.
function of temperature as the rotational constant was inTherefore, there is a long-range ordered phase at low tem-
creasing from its classical valu@* =0, see Fig. 3 in Ref. peratures present in addition to the disordered high-

V. RESULTS AND DISCUSSION
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) "7 "@N=144 *

05 | ON=324 T —— mean fleld
. O N =900 2.0 - O PIMC
0.4
15 | DISORDER
0.3
. 1.0 |
021 o'-0.6109 On.
0.1 ] 051
oo (a) ORDER G
- Y # 0.0 —————t——
000102030405 0.6 T 0.0 0.2 0.4 0.6 0.8 1.0 1.2 @*
gn:;gz FIG. 2. Phase diagram of the quantum APR model in the
0.4 (b) E AN =576 1 O®*-T* plane. The solid curve shows the line of continuous phase
ON = 900 transitions from an ordered phase at low temperatures and small
0.3 rotational constants to a disordered phase according to the mean-
) field approximation. The symbols show the transitions found by the
finite-size scaling analysis of the path-integral Monte Carlo data.
0.2 The dashed line connecting these data is for visual help only.
0.1 . : : . -
ing phase diagram in th®*-T* plane is shown in Fig. 2
0.0 ) ) ) with the solid line. We note that in the classical limiting case

0.0 0.2 0.4 0.6 T ®*—0 we findT; =2, which agrees with earlier mean-field
calculationg41]. Any crossing of the phase boundary in the
FIG. 1. Orientational order parametér as a function of tem- mean-field phase diagram Fig. 2 corresponds to a second-
perature. Symbols indicate different system sizes, statistical errasrder phase transition; note that it is belieyé@,5] that for
bars are shown, and lines are for visual help only. The values of th@* =0, the classical APR model undergoes a fluctuation-
rotational constants ar@ ©*=0.6109 andb) ©* =0.6982. driven weak first-order transition at* ~0.76 forL—. We
see that at zero temperature there is a quantum phase transi-
temperature phase. This orientational ordering that takeson at the value o®*MF=1. The most interesting feature of
place with decreasing temperature results in the limithe phase diagram is that there is a region of rotational con-
0*—0 in the classical APR transition and the well-definedstants ranging from 1 to roughly 1.25 for which the system is
herringbone ordered ground state. This picture changesrdered at intermediate temperatures but disordered in the
however, as the quantum fluctuations get more pronouncedround statg(reentrancg The intuitive explanation of this
When the value o®* is increased further, the maximum phenomenon is the following. At low temperatures, the indi-
value of the long-range order parameter drops considerablyidual rotors are mostly in their totally rotationally symmet-
with increasing system size, as can be seen foric ground state, which does not possess quadrupolar mo-
®* =0.6982 from Fig. (b). The order parameter at our low- ment and therefore cannot induce ordering via the
est temperatures is now strongly depressed and also dgquadrupolar term. At intermediate temperatures, the excited
creases further with increasing linear dimension of the sysstates with nonzero quadrupolar moment become populated
tem. The finite-size effects in this intermedi&¢ range are and induce ordering that persists to larger values of the rota-
thus pronounced not only at the high-temperature wing of thé¢ional constant. According to the mean-field theory, reen-
order parameter vs temperature curve, btllatemperatures trance takes place for a rather broad range of rotational con-
and in particular also close to the maximum of the orderstants k ®* <1.25. This corresponds to a decrease of the
parameter. This is already a hint that the residual order irritical rotational constant by roughly 20% from its maxi-
this range of®@* values might actually be a finite-size arti- mum value of about 1.25 to the value of 1 at the ground-state
fact. From the previous study22] we know that a further transition and represents a well-pronounced feature. Con-
increase in®* would suppress the ordering even more andcerning the validity of this mean-field result, it is known that
finally lead to a situation with vanishing order parameter athe mean-field approximation sometimes tends to overem-
any temperature. All this motivated us to analyze the behavphasize or even create reentrant behavior, as pointed out in
ior of the system further in order to see whether theRef. [24]. On the other hand, reentrant behavior has been
intermediate-temperature maximum and low-temperature reaxperimentally observed in solid HD under compression
duction of ordering, suggestive of a reentrant orientational42]. This three-dimensional system, however, although con-
melting, are really associated with the latter phenomenon. Isisting of diatomic molecules interacting via approximate
order to answer such a question one has to employ finite-sizguadrupolar interactions, differs fundamentally from our
scaling techniques that would allow us to find out whether anodel in spatial dimensionality and structure of the lattice as
particular phase transition is present, and if so, to locate it.well as in the dimensionality of the order parameter. In order
Before we start with the numerical finite-size scalingto settle the question of reentrance in the 2D quantum APR
analysis of the PIMC data, let us pause for a moment andghodel, we present now the results of numerical simulations
discuss the mean-field predictions from Sec. IV. The resultand analysis techniques.
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FIG. 3. Energies as a function of temperature for the rotational

constant®* =0.6109:(a) potential energyE o, (b) kinetic energy FIG. 4. Energies as a function of temperature for the rotational
* — . H . .

Exin., and(c) total energyE,,. Symbols indicate different system Cconstant®* =0.6982:(a) potential energye,, (b) kinetic energy

sizes and lines are for visual help only. Exin. and(c) total energyE,,. Symbols indicate different system

sizes and lines are for visual help only.

We start with the results for potential, kinetic, and total compared to the thermal energy. This can finally lead to a
energies of our model. These are presented in Figs. 3 andphase transition from the low-temperature orientationally or-
for two representative caséy* =0.6109 and®* =0.6982, dered phase to a high-temperature disordered phase, pro-
respectively. In both cases the potential energy first devided the rotational constant does not exceed a certain value.
creases with temperature until maximum order is achievedit very low temperatures the slope of the total energy as a
while the kinetic energy increases strongly in this region. Forfunction of temperature, i.e., the specific heat, approaches
larger temperatures boty,, andE,;, increase with tempera- zero, as expected for quantum systems. We did not find a
ture. Thus, when the temperature is increased from zero th&rong size dependenceBf,(T*) and thus the specific-heat
rotators occupy higher rotational states, which allow forbehavior also does not seem to depend on the system size.
more pronounced orientational ordering compared to that in  Similar to the total energy, the average spr&d which
the ground state. In these ordered states the attractive quid-a measure of the quantum-mechanical delocalization of the
drupolar interaction is larger, resulting in a lower potentialrotators, is not dependent on system size as shown in Fig. 5.
energy, and the kinetic energy increases strongly with temAs can be seen from its definitiof8.7) this quantity is a
perature due to enhanced localization of the rotators alongingle-particle property that is by construction not particu-
some direction. This scenario continues with temperature urarly sensitive to collective effects. The spread approaches its
til maximum order is achieved. A further increase of tem-classical limit, i.e., zero, for large temperatures, the approach
perature results in an increase Bf,; due to thermal disor- being slower for large®*. In the limit of low temperatures,
der, making the quadrupolar interaction less importanit reaches a ground-state value that is larger than 90° for the
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rotational constan®* =0.6982, which means that an indi-
vidual rotator is no more confined to perform librational mo-
tion around a preferred orientation, but is instead strongly
delocalized. On the other hand, we know already from Fig.
1(b) that the order parameter is vanishingly small at low
temperatures and decreases even more with increasing sys-
tem size for this value 0®*. The behavior of the average
spread is thus a clear demonstration that it is the quantum
tunneling that induces the disordering of the ground state for
sufficiently large rotational constants.

In order to finally address the question whether our sys-
tem has a reentrant phase transition as predicted by the
mean-field study we analyzed the low-temperature region by
the cumulant intersection finite-size scaling method de-
scribed in Sec. Il C; see Figs. 6—8. For our smallest rota-
tional constant®* =0.6109 we clearly find an intersection
point for bothU* and U{® at aboutT*~0.30; see Figs.
6(a@) and 7a). For the larger rotational constant
0®*=0.6364[Figs. 6b) and 7b)], the intersections of the
fourth- and second-order cumulants occur again both at the
same value within the error bars. These crossings arise be-
cause the cumulants for larger systems approach their limit-
ing values faster than those for smaller systems. For
®* =0.6666 the cumulants on the different length scales at
low temperatures have values that cannot be distinguished
within the error bars; see Figs(d@ and 7c). The large value
of U*~0.65 that was found for the classical APR model
£12] causes here the problem that within our numerical ac-
curacy we cannot identify an intersection point, but rather
obtain a whole temperature region that is characterized by
pronounced fluctuations. For larg®* constants the behav-
ior of the two cumulants can again be distinguished fairly
well. However, contrary to what we found f@* <0.6364,
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FIG. 6. Fourth-order cumulant
U™ as a function of temperature.
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the larger system now has the smaller cumulant throughoubtermediate temperatures in the neighborhood of the phase
the whole temperature range; see Fig&)@nd 7d). This  boundary line. The latter has at low temperatures a roughly
signals the presence of the orientationally disordered phaseertical (i.e., ®* independentslope rather than the charac-
for ®* =0.6982 that extends from the ground state up tateristic shape suggested by the mean-field result in Fig. 2.
high temperatures. From this behavior of the cumulants we In order to reinforce such a conclusion for this part of the
conclude that there is no evidence for the reentrance transphase boundary we also studied the cumulants as functions
tion but rather a pronounced increase of short-range order aff the rotational constant at constant temperature in the range

0] . . @
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T*=<0.2424. The fourth-order cumulant plots of Fig. 8 showincreasing temperature and then disorders again at higher
that the intersection occurs in this low-temperature range at ®mperatures via a phase transition, which corresponds to the
value of about®*~0.667+0.015, which stays constant well-known herringbone orientational transition in the clas-
within the numerical noise; the second-order cumulantsical limit.

U{® show the same behavior. Note that a systematic increase We studied the quantum APR model also numerically us-
followed by a decrease of this quantity is expected as a fundng path-integral Monte Carlo simulations in combination
tion of temperature if reentrance does occur. We can furthewith a finite-size scaling analysis in order to explore the re-
more infer that the nontrivial valug* of the cumulants at gion of the phase diagram where reentrance is expected. It
crossing is also in this low-temperature regime with pro-turned out that no reentrant transition is present, at least
nounced tunneling and quantum effects within the numericatvithin the usual numerical limitations of such simulations,
accuracy identical to the valug* ~0.65 found for the clas- Which are most importantly set by the statistical errors and
sical APR phase transitidii2]. We are thus lead to conclude limited system sizes concerning both tNeand P dimen-

that the APR transition temperature decreases slowly frorgionalities. In order to determine whether there still is a tiny
its classical limit value off* ~0.76 at®* =0 down to about reentrance region hidden within our numerical accuracy, at
T*~0.24 at®*~0.67, where it suddenly drops dramati- least an order of magnitude larger amount of computer time
cally. This numerically obtained nonreentrant phase diagrarould be required, which at present seems to be prohibi-
is included in Fig. 2. The PIMC simulation results clearly tively expensive. For the same reason we did not attempt to
exclude the existence of a strongly pronounced reentrant fe@ddress the issue of the order of the quantum-induced APR
ture in the phase diagram. Of course, we cannot exclude theghase transition in the ground state. We could, however, in-
possible existence of a narrow reentrance region fallinger that the nontrivial cumulant values at the APR phase
within the error bars of the present data. However, in anyiransition at low temperatures and large rotational constants
case these error bars are much smaller than the 20% decre&$€ Within the estimated uncertainty identical to the value
of the critical rotational constant predicted by the mean-fieldobtained in the classical limit.

theory. The latter approximation is successful in predicting There are several possibilities to extend the present study.
the phenomenon of enhanced ordering at intermediate ten§-oncerning the problem of reentrance in systems consisting
peratures, but the deficiency is that it exaggerates the rand¥ quantum rotators, it might be interesting to study the ef-
of order and incorrecﬂy predicts it to become |ong ranged_fect of hlgher multipole interactions. In addition, it would be
As can be seen from Fig. 2, the mean-field theory apparentigesirable to go beyond the mean-field approximation by
treats the quantum fluctuatiofthe limit T* —0) better than Means of analytical techniques, such as, renormalization
the thermal fluctuationghe limit ®* —0) since the transi- techniques capable of including accurately the quantum fluc-
tion point of the quantum-induced transition is overestimateduations. Finally, it is certainly desirable to develop even
only by a factor of about 1.5, whereas the purely classicafnore efficient quantum simulation and analysis techniques.

transition is off by a factor of more than 2. All this demonstrates that investigationspifase transitions
in quantumsystems with continuous degrees of freedom are
VI. SUMMARY AND CONCLUSIONS even today still a challenge.

Note added in proofRecently, we found that the statisti-

We have studied the quantum generalization of thecal error bars presented in the figures are actually larger than
anisotropic-planar-rotor model consisting of point quadru-the true ones. The true error bars are a factor of about 3
poles that are pinned with their center of rotation on a triansmaller than those shown in the figures.
gular lattice. This two-dimensional statistical-mechanical
model system exhibits interesting orientational ordering ef-
fects, as a function of temperature and the rotational constant
that controls the strength of the quantum fluctuations. A R.M. acknowledges stimulating discussions with E. To-
mean-field study predicts for this quantum system a reentrarsiatti. P.N. thanks the DFG for supp@Heisenberg Founda-
orientational order-disorder transition with a pronounced retion). We gratefully acknowledge granted computer time on
entrance region. Thus, in an intermediate range of rotationghe CRAY—-YMP (HLRZ Juich and RHRK Kaiserslautejn
constant values at low temperatures the system orders wiind CRAY-T90(HLRZ Juich) supercomputers.
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